The Fundamentals of IV (Current/Voltage) Measurement

April 10, 2012

Alan Wadsworth Market Development Manager Americas Field Marketing

Webcast Agenda

- IV Measurement Basics
- Source/Measure Units (SMU) Introduction
- Low Current Measurement Techniques
- Making Accurate Resistance Measurements
- B2900A SMU Series Features & Benefits
- Final Remarks

IV MEASUREMENT BASICS

What is Current? Total (+) Charge Current Unit Time Х

Negative charge (electrons) flowing in the negative x direction is equivalent to positive charge flowing in the positive x direction.

Note: In semiconductors it is possible to measure the flow of positively charged <u>electron holes</u>.

Understanding Accuracy & Repeatability

Accuracy – The degree of conformity of a measured or calculated quantity to its actual (true) value.

Repeatability (aka precision) – The degree to which repeated measurements or calculations show the same or similar results.

High accuracy, low repeatability

Low accuracy, high repeatability

Understanding Measurement Resolution

Resolution – The smallest change in data that an instrument can display.

Simplified analog-to-digital converter (ADC) circuit.

What is a Half Digit of Resolution?

 \rightarrow Be careful! This can mean different things for different instruments

Answer: It is the $\underline{7}$. In this case the least significant digit only has $\frac{1}{2}$ the resolution of the other digits.

Why Are Triaxial Cables Needed for Low-Current?

Triaxial Cable:

 $\frac{(100.000001\,V - 100\,V)}{1 \times 10^9 \Omega} = 1\,fA$

Triaxial cable reduces leakage current by a factor of 100,000,000.

What is a 4-Wire (Kelvin) Measurement?

 \rightarrow Eliminate cable resistance from the measurement

ground, but in this case they can be floated up to 250 V above or below chassis ground if desired.

SOURCE/MEASURE UNIT (SMU) INTRODUCTION

What is a Source/Measure Unit (SMU)?

Simplified equivalent circuit (2-wire measurements):

Note: The tight integration of these measurement resources yields better accuracy and faster measurement than would an equivalent collection of separate instruments.

Why Would You Use an SMU for IV Measurements?

An SMU integrates the following capabilities into <u>each channel</u>:

- Four-quadrant voltage source
- Four-quadrant current source
- Voltage meter
- Current meter

Here are the two most common modes of operation:

VFIM (Force voltage & measure current)

IFVM (Force current & measure voltage)

Why Use a Benchtop SMU for IV Measurements? Reason #1: Improved Measurement Efficiency

Problem: Limited bench-top space for single-function instruments.

Solution: A benchtop SMU reduces the number of instruments and reduces messy wiring.

Non-SMU setup example for 4-terminal device SMU setup example for 4-terminal device

Why Use a Benchtop SMU for IV Measurements? Reason #2: Eliminate the Need for a PC

Problem: Many bench-top instruments require a PC to graphically display data and to make measurements.

Solution: A GUI-based benchtop SMU supports real-time IV curve monitoring directly on the instrument. You can also save graphs and data to a flash drive for report generation.

LOW CURRENT MEASUREMENT TECHNIQUES

- How do I eliminate electromagnetic interference?
- How do I avoid creating ground loops?
- What is measurement ranging and how do I optimize it?
- Why is integration time important in eliminating noise?
- How do I eliminate voltage and current transients?

Use Shielding to Avoid Electromagnetic Interference

Avoiding Ground Loops

Conductive planes tied together at only one point cannot have any current flowing between them. Conductive planes tied together at multiple points creates a loop for current (a condition to be avoided).

\rightarrow Do not connect up equipment to ground at more than one point!

Understanding Measurement Ranging - 1

All measurement circuitry needs to switch in and out various resistors in order to measure currents and voltages at different levels.

The measurement range determines the maximum measurement <u>resolution</u> that you can obtain*.

*Typically 5 decades below the measurement range.

Understanding Measurement Ranging - 2

Integration Time Eliminates Measurement Noise

Integration **DOES NOT** have any effect on the measurement resolution.

Eliminating Transient Effects

Time

The hold time and delay time settings allow you to specify how long to wait before starting a measurement after the SMU applies voltage or current.

Step #1: Perform Self-calibration

Almost all instruments designed for low-current measurement have some sort of self-calibration mechanism. It is important that you DO THIS before attempting a low-current measurement.

Note: B2900A example shown

Step #2: Select the Correct Current Measurement Range

Most instruments DO NOT boot up in their lowest measurement range. In this example notice the improvement in measurement performance obtained by changing from the 1 μ A current measurement range to the 10 nA current measurement range.

From the front panel:

In Single View mode you can specify the current measurement range.

Note: B2900A example shown

Using 1 µA Current Measurement Range:

Using 10 nA Current Measurement Range:

Step #3: Increase the Integration Time to Eliminate Measurement Noise

In general, low-current measurements need at least 1 power line cycle (PLC) of integration to obtain decent results (in this example NORMAL integration). Extremely low currents and/or noisy environments may require LONG integration (16 PLCs). You can use MANUAL integration to select PLC values between these two extremes.

From the front panel:

In Single View mode you can select the measurement speed (integration time)

Correlation in the second secon		Source :	VOLTS S	peed
1 Control = 100,0000 μA Show Measure Speed : AUTO 200mV Pulse Ranges : Source Volts : Spot AUTO 200mV Trigger Measure Amps AUTO 1µA More More More			npliance):	how weep
Ranges: Source Volts:Spot AUTO 200mV Show Measure Amps AUTO 1µA Measure Ohms OFF More	1	Measure Speed : AUTO	0.0000 μA Ρ	how ulse
Measure Amps AUTO 1µA Measure Ohms OFF More		Ranges : Source Volts : Spot AUTO 200mV	S	how rigger
		Measure Amps AUTO 1µА Measure Ohms OFF	M	lore

Note: B2900A example shown

Step #4: Select an Appropriate Measurement Trigger Delay Time

The length of the wait time depends primarily on the size of the voltage step; larger voltage steps require longer wait times. However, the magnitude of the capacitance being driven also impacts the wait time (larger C \rightarrow longer wait times).

Note: B2900A example shown

From the front panel:

Using a Trigger Delay Time of 200 ms

In Single View mode you can select the measurement delay time

		Source ک	: VOLTS	Speed
			Compliance):	Show Sweep
Measure Speed :	AUTO	T.	100.0000	Show Pulse
Trigger : MANU	JAL Count :	Source	Measure	Hide Trigger
	Period : Trigger :	0.000 s 10.00 µs AUTO	10.00 µs АUTO	More
			MO	VE LAN 1

Using a Trigger Delay Time of 0 ms

Important! Current Measurements <1 nA Require Triaxial Cabling & Fixturing

Kelvin Adapter

Non-Kelvin Adapter

N1294A-001 Banana–Triaxial Adapter for 2-wire connection (non-Kelvin) N1294A-002 Banana–Triaxial Adapter for 4-wire connection (Kelvin)

MAKING ACCURATE RESISTANCE MEASUREMENTS

Understanding Resistivity and Resistance

When characterizing materials we typically want to know the <u>resistivity</u>, which is a material property that is independent of the dimensions of the device being measured.

Understanding "Ohms per Square"

 $R_{S} = (R_{S} \parallel R_{S}) + (R_{S} \parallel R_{S})$

You may sometimes see the term "Ohms per Square". This is simply another way of specifying resistivity. As long as the thickness of a material is constant, it has the same measured resistance for any sized square of the material.

Measuring Resistance: A Trivial Measurement?

- V = I x R, correct? NO!
- $V = I \times R(T) \rightarrow Resistance depends on temperature!$

This is referred to as the Joule self-heating effect.

Resistance measurement is a tricky balance between two factors:

- 1. To keep the resistor from heating up and the resistance value from changing, we need to keep the current (= power) low.
- 2. Small currents imply that we need to measure smaller voltages, which in-turn requires more voltage measurement resolution capability.

The Importance of Thermal Resistance

- For a 1 cm² block of SiO₂ 1 μm thick, if you apply 1 W the temperature will rise by 0.007 °C
- For a 10 μ m² block of SiO₂ 1 μ m thick, if you apply 1 W the temperature will rise by 7,000 °C!

How Much Power Can I Apply to a Structure?

$$P = V \times I = V \times \frac{V}{R} = \frac{V^2}{R} \rightarrow V_{\text{max}} = \sqrt{P_{\text{max}} \times R(T)}$$

At or near room temperature the resistance of a Cu or AI metal line changes by about 0.35%/°C. This allows us to compute the maximum amount of power that can be dissipated to produce a 0.1% change in resistance for a Cu or AI metal square 10 mm by 10 mm.

$$0.1\% = P_{\max} \times 0.007 \ ^{o}C - cm^{2} / W \times 0.35\% / ^{o}C \times 1 / (10 \, mm)^{2} \times (10 \, mm / 1 \, cm)^{2}$$

$$\therefore P_{\max} = 0.04 \, mW$$

To achieve 0.1% accuracy in a copper structure with an equivalent resistance of 10 m Ω per square (1 mm thick film) we have the following:

$$V_{\text{max}} = \sqrt{(0.04 \ mW) \times (10 \ m\Omega)} \approx 0.000632 \ V$$

\rightarrow Need 1 μ V of voltage measurement resolution!

Thermo Electro-Motive Force (EMF): What is It?

EMF: A transient voltage pulse that is associated with reed relay switches.

EMF can have a significant impact on low-level resistance measurements.

Modified Kelvin Resistance Measurement

B2900A SMU SERIES FEATURES & BENEFITS

B2900A Series of Precision Source/Measure Units

B2900A Key Features:

- 1. Range of up to ±210 V and ±3 A (DC) / ±10.5 A (pulsed) provides wider coverage for testing a variety of devices
- 2. Measurement resolution of 10 fA and 100 nV offers better source and measurement performance
- 3. GUI for quick bench-top testing, debug and characterization

Interactive Device Evaluation Can be Performed Entirely from the Front Panel (4 Viewing Modes):

Dual Channel View (2-ch Units Only)

Graph View (I-V, I-t, and V-t plots)

		Mode							
	$\frac{1210.0000}{100000}$								
1	Measure Speed : AUTO	Limit							
	Sweep Parameters : LINEAR SINGLE	Measure							
	Start: 000.0000mV Stop: +210.0000 V Points: 211 Step: +1.000000 V	More							
	HV REM I	AN 1							
	Config Function Trigger Result File M	ore							

Single Channel View

Roll View (similar to strip chart)

Setting Up a Sweep Measurement from the Front Panel is Easy!

B2900A Series Sourcing Capabilities

B2900A Series Measurement Capabilities

The B2900A Series has four measurement functions that can be selected for either channel using its front-panel GUI or SCPI commands.

High Speed Digitizing Capability

In addition to its intrinsic measurement functions, the B2900A Series has an advanced trigger design that enables high speed digitizing measurements (20μ s for B2901/02A, 10μ s for B2911/12A).

B2900A Maximum Voltage and Current Output

	Maximum Voltage	Maximum Current		
	210 V	0.105 A		
DC or Pulsed	21 V	1.515 A ²		
	6 V	3.03 A ²		
Dulaad anh ¹	200 V	1.515 A		
Puised only'	6 V	10.5 A		

- 1. Maximum duty cycle is 2.5%
- 2. On 2-channel units some additional restrictions apply on the combined current output of both channels (please refer to data sheet)

The B2900A Allows You to View Graphical Measurement Results

Roll View Provides a Convenient Way to View Slow-Moving Voltages/Currents Over Time

Agilent Has Free "Quick I/V" Software for Customers Wanting PC-Based Instrument Control

B2900A Series Model Comparison

Model	# of SMU Ch's	Set/Measure Range		Setting Resolution		Measurement Resolution					A	
				Digits	Min. Resolution		Digits	Min. Resolution		Rate (sample/s)	Other Features	Pricing (US)
		V	I	J	I	V		I	V			
B2901A	1	±210V	E14	1.0.0.1	1.11/	1.1/ 41/	100£4	100p)/	50 k/sec	• XY View	\$5.8K	
B2902A	2		±3A/ch (DC)	J72	трА	ιμv	072	IUUIA	10011	(20µs/pt)	AWG/List Sweep	\$8.5K
B2911A	1		±10.5A/ch (Pulsed)	616	10fA 1	100n\/	616	10fA 100n\	100nV 100 k/sec (10µs/pt)	100 k/sec	• XY View	\$8.3K
B2912A	2			072	IUIA		072			Roll View	\$12.8K	

FINAL REMARKS

Additional Agilent SMU Instrument Products

Comparison of the B1500A & B1505A

Parametric Measurement Handbook Available

>200 pages of invaluable information on parametric test

You can download the PDF file (Rev 3) from the web: http://www.agilent.com/find/parametrichandbook

You can also request it after completing the evaluation form.

Question & Answer Session

